OpenStreetMap

lxbarth's diary

Recent diary entries

Condatos Mexico City: First Gathering of the Latin American OpenStreetMap Community

Posted by lxbarth on 10 October 2014 in English (English)

The annual open data conference AbreLatam / Condatos last week in Mexico City gathered for the first time the Latin American OpenStreetMap community. The OpenStreetMap track Conmapas connected people who've been working alongside in Latin America virtually for sometimes more than five years, and also drew in a huge crowd of city planners, activists, hackers, and map lovers who came to learn everything about OpenStreetMap.

This was a highly timely event in a year with heightened activity in Latin America's OpenStreetMap community and just a month from the annual OpenStreetMap conference State of the Map this year to take place in Buenos Aires from November 7th - 9th.

Here are some highlights of the event:

The morning was all talks and a panel about the growth of OpenStreetMap. We spent the afternoon with workshops and hacking on maps, editing OpenStreetMap, map making and opening data. You can read up on the full #conmapas program on the conference web site.

Mati Karwil and Aure Moser presented Bikestorming, an initiative to make cities world wide more bike friendly by providing more information about existing bike infrastructure using OpenStreetMap.

Thiago Santos described how he unlocked many dozens of PDFs from the Brazilian statistical institute IBGE. Here he's bribing attendees with chocolate to come out for his afternoon workshop to open Mexican INEGI data for OpenStreetMap. Without need as it turned out :)

Mayeli Sánchez Martínez from Proyecto Poder presented her work tracking extractive industry activities together with the Geoinquietos group.

Humberto Yances from Colombia with the Humantarian OpenStreetMap Team and the web service provider Náritas explained how he uses and contributes to OpenStreetMap both for the social good and as a private business.

Isaac Pérez-Serrano and Daniel Perez Tello from the Laboratorio para la Ciudad in Mexico City presented the lab's upcoming participatory mapping initiatives.

Pierre Béland from the Humanitarian OpenStreetMap team made a call to map before disasters strike.

Marcelo Aliaga from OpenStreetMap Chile and then Chilean presidency walked through how OpenStreetMap became big in Chile and how the initiatives of the Chilean OpenStreetMap chapter.

Paul Goodman from the Mapbox team gave a walk through of mapping with drones.

See a full map of our three drone mapping missions in Mexico City

I loved the presentations at the open mapping panel together with Pierre Beland (Humanitarian OpenStreetMap Team), Gerardo Esperza (INEGI), Ives Rocha (Centro de Promoção de Saúde), about the benefits of OpenStreetMap for community mapping and government. Highlight: Gerardo Esperza from INEGI reiterated their data was available for OpenStreetMap. Now let's work on using that data!

At Conmapas core OpenStreetMap contributors from Latin America met each other for the first time in real life. Attendees from Argentina, Brazil, Colombia, Mexico, Nicaragua devised ways of working closer with each other. Concrete outcome: a new, much needed coordination channel for Latin America and many ideas on how to build stronger networks in Latin America.

To be continued

This Latin American network is just getting started. Join in and continue the conversation at State of the Map in Argentina.

Thank you

A big, big thank you to everyone who made this possible: Jorge Soto, Ania Calderón, Alejandra Ruiz and Rodolfo Wilhelmy of the Mexican presidency. Without the support of the Mexican presidency in terms of logistics and funding, this event would not have been possible. In addition to the presidency, Gabriella Gomez Mont, Stalin Muñoz, Jaime Quintanar, Lupita Gonzales of the Laboratorio para la ciudad were of amazing help coordinating locations for flying mapping drones in Mexico City. And last but not least, a huge thank you to all speakers for putting together an amazing program. Here's to more!

Photos: Vitor George, Humberto Yances, Paul Goodman, Eric Gundersen.

Location: Benito Júarez, Benito Juárez, Mexico City, Federal District, Mexico

I am running for re-election to the OpenStreetMap US board - I'd love your vote on October 4th

Posted by lxbarth on 30 September 2014 in English (English)

Vote today. OpenStreetMap US elections are open now. You can vote until October 12th. If you are an OpenStreetMap US member, you have a ballot in your inbox. If you're not you can become one in minutes and still vote.

I'm running for re-election to the the OpenStreetMap US board to expand OpenStreetMap US as a convening organization for everyone.

Over my past two years on the board, we have doubled the size of the State of the Map US conference, expanded its appeal to non-traditional audiences, increased diversity with scholarships and a distinct cross-audience appeal, and supported over 70 mapathon events that you all have helped organize.

OpenStreetMap is about the combination of the community: individual mappers and businesses and the humanitarian community and governments. We will succeed even more if we make an even more open community for everyone to collaborate. Working with Martijn, John, Jim, Kathleen, Mele, and Ian has been incredibly rewarding and I'd like to continue this into a third year.

To create a better map, we need to continue to expand OpenStreetMap beyond its current limits to communities we're not talking to yet. We need to bring OpenStreetMap to a broader set of industries, organizations, and communities. This is also the key for creating more diversity in terms of gender, global presence and ethnicity. To become more diverse as a community we have to grow in numbers.

The key tool to accomplish these goals is the annual State of the Map US conference. I am looking forward to further hone this conference as a space for everyone to come together and share their vision for OpenStreetMap and for newcomers to become part of the community. OpenStreetMap is about bringing the community together and bringing new people into the community. This includes a continued international appeal. We are playing an important role to bring international community members to the US to meet with them and to discuss core OpenStreetMap improvements but also help grow OpenStreetMap internationally.

Lastly, I don't want to finish my note without this appeal: If you care about OpenStreetMap you should run. Never think that to be on the board of OpenStreetMap you need to fill some sort of profile. Whether you're an individual mapper, whether you're a teacher or business person or use OpenStreetMap at your nonprofit, whether you're famous on the mailing lists or whether you just opened your first OpenStreetMap account last week. Put your hat in the ring and help OpenStreetMap grow in the US and beyond!

I would love your vote on October 4th. To participate, all you need to do is become a member. You can do so now, in just a minute. Find a full list of all candidates on the OpenStreetMap Wiki.

The Mapbox OpenStreetMap Data Team Guidelines

Posted by lxbarth on 19 September 2014 in English (English)

Earlier this week Danny and Richman joined our growing data team. Alongside Ruben, Edith and Luis they will help us here at Mapbox contribute even more and better improvements to OpenStreetMap. With our data team up to five full-time members, we can redouble efforts on projects like tracing all of San Francisco's buildings, fixing massive amounts of TIGER misalignments and importing 1 million New York City buildings. This is a huge step up in our ability to contribute data and give back directly to the community. To make this work, we're creating public guidelines that ensure our involvement is positive for OpenStreetMap as a community and as a map.

Updates to TIGER roads in US by Mapbox data team

In addition to the rules that apply to everyone in the community, here are the guidelines we want to reiterate and add for ourselves:

  1. We listen to community. We are looking for your feedback on how to make a better map. Get in touch with any of our data team members. For general feedback drop aaronlidman or me a line.
  2. Quality is paramount. We hold ourselves to the highest mapping standards as documented on the Wiki or as established as common practice in the community.
  3. Local knowledge first. Where in any doubt, the locally surveyed information prevails over remote updates.
  4. We disclose all ongoing mapping efforts on the OpenStreetMap Wiki.
  5. All full time data team members will be listed OpenStreetMap Wiki and identified on their user profiles.
  6. Where possible we use public tools for coordinating work, allowing anyone in the community to participate.

You can find these guides on our Wiki page. Let me know what you think of them, and what we could do better.

Here's to making the best map in the world!

Importing 1 million New York City buildings and addresses

Posted by lxbarth on 21 August 2014 in English (English)

As of June, New York City buildings and addresses have been fully imported to OpenStreetMap. While we are tackling remaining cleanup tasks I wanted to share a full recap of the effort. I am very happy with the overall result. There are lessons to be learned here from what went well but also where we could have done better - read on for the details.

More than 20 people - volunteers and members of the Mapbox team - spent more than 1,500 hours writing proposals, discussing, programming, uploading, processing and reviewing. Between September 2013 and June 2014 we imported 1 million buildings and over 900,000 addresses. We fixed over 5,000 unrelated map issues along the way.

Here are screenshots of the resulting work:

Building coverage on Manhattan island, the southern tip of the Bronx to the northwest and Wards island to the right.

JFK airport buildings in Queens, bordering on the Hamilton Beach neighborhood to the left and South Ozone Park to the north.

Coverage around Battery Park and Wall Street in Manhattan. This is an area that already had many buildings. We filled in the gaps and replaced buildings where the New York City data set was clearly better.

We imported over 900,000 addresses. Here is an example of the Park Slope neighborhood in Brooklyn.

Buildings contain height information and render nicely as seen here on this example of downtown Brooklyn on Fmap.

The import covers all of New York City's five boroughs

Overview

This is a full writeup sharing my experience with the New York City import in the hope that there is one or the other valuable lesson, good idea, or line of code for you to walk away with. Note that this post is very specific to the work in New York City. If you're planning to do an import, make sure to check out the Import Guidelines for a more universal checklist of how to go about imports.

If you're looking for the 30 seconds version, I'd summarize my take aways like this:

  • Importing is a lot of work, make sure you have the time to commit.
  • Be prepared to continuously improve your conversion scripts and already uploaded data throughout the import.
  • Importing is a skill. It looks easy at first, but everyone involved uploading will need proper support, advanced knowledge of mapping practices and data validation by peers.
  • Involve community where possible, clear and frequent communication is clutch.
  • Invest in your tools

Read on for the deep dive.

OpenStreetMap as a collaboration space for citizens and government

Using New York City's data for OpenStreetMap became possible thanks to the then-mayor Michael Bloomberg's open data policy. Local Law 11 of 2012, releases all New York City government data "without any registration requirement, license requirement or restrictions on their use" (23-502 d). This effectively puts the data in the public domain, making it compatible with OpenStreetMap's contributor terms.

Both, address point data and building data fall under this law and are available for download on New York City's open data web site:

The way we used this data in OpenStreetMap is an illustration of how Bloomberg's plan to stimulate the economy with open data is starting to pay off. This data in OpenStreetMap is now benefiting everyone using OpenStreetMap and this includes the New York City based startup Foursquare which is using OpenStreetMap data on its Mapbox powered maps.

But the relationship between OpenStreetMap and New York City should be ideally a two way street. How can the creator and maintainer of the building and address datasets - New York City's GIS department - benefit directly from their work being imported in OpenStreetMap? The vision of edits in OpenStreetMap directly helping improve a crucial government dataset is very promising. OpenStreetMap is a unique data collaboration platform while datasets like building or address catalogs are incredibly hard to maintain - even for a large municipal government like New York's. How can government become a part of OpenStreetMap?

OpenStreetMap's share alike license means that OpenStreetMap data can't be taken over directly into New York City public domain datasets but we can use OpenStreetMap to find out where changes happened. We set up a daily change feed flagging modifications to buildings and addresses to subscribers. Here's a copy of a change notification email how New York City GIS receives it every day:

Daily change notifications from OpenStreetMap, flagging building and address changes to New York City government.

The notification contains a list of relevant changesets from the previous day with a link to each modified building and address. We are right now assessing the utility of these emails. Another way of leveraging OpenStreetMap as a change signal would be to periodically extract all building and address data and identify all changes in a certain time frame at once.

All code powering the change feed is available as open source on Github. If you'd like to receive the New York City change feed notifications, please let me know. Happy to subscribe you.

Import procedure

To import New York City data we had to convert it to OpenStreetMap format first and cut it into byte size chunks so we could review and import it manually, piece by piece. Once it was imported, a different person than the original importer would validate the data. This means reviewing it for errors and cleaning it up where needed.

Selecting a task on the tasking manager, opening existing OpenStreetMap data and opening importing data in JOSM.

Each participant would set up their workspace according to documentation we provided on Github. In the same document we laid out the actual import procedure. Some of the key items of the import procedure were:

  • Use a separate import account
  • Run full JOSM validation, fix all conflicts with existing data
  • But also fix all existing unrelated issues in area
  • Spot check data - for instance, do street names line up?
  • Merge POIs where appropriate
  • In case of duplicate data, keep the best data if there is a clear difference. In case of any doubt, keep the local data.
  • Add a note where a local mapper could solve a problem

As we imported, we ran into a series of recurring issues that we shared in a common issues guide - a useful resource for training new mappers and agreeing on fixes for unclear situations.

Community import or not?

From the beginning, the import was planned as a community import. There is no standing definition of this practice, but the rough idea is that uploads to the map would be done predominantly by members of local community familiar with the areas uploaded. Once started into the import, we quickly ran into a series of issues.

For Mapbox data team members participating in the import full time it was very easy to outpace local volunteers by a huge factor. In addition, I underestimated the complexity of the actual review and upload work. While not hard, there was a certain learning curve which meant that every new individual joining required significant training and support to get started - which meant plain and simple time that someone had to spend. Add to this that the individual time commitment is huge. I estimate we spent about 1,500 hours among everyone involved - and this is on the conservative side. Assuming 20 people work on the import, each one of them would look at 75 hours on this project. Very few people spend this much time on OpenStreetMap in a year.

The pace of uploads turned out to be key friction point. At the same time a series of data quality issues arose. This is why a couple of months into the import the loosely formed group around the project including community members and myself decided to pause the import and when we restarted a month later, slow it down and stop billing it as a community import. This would allow everyone to participate better and it would set expectations straight as to who was doing the uploading work. I think this adjustment was a good one. Overall it took us 10 months to get the job done - longer than I thought but still a pace that I was comfortable with to commit help finish the job. In the end a vast majority of uploads, validations and programmatic updates were done by the Mapbox team and I'm glad we had the opportunity to contribute.

Still, community involvement was clutch. The incredible input everyone gave, the many reviews, advice and personal time people invested was crucial to make this import a success. Everyone weighing in has helped make the resulting map better.

Sh** happens

We dealt with data corruption and conversion script bugs all using Github issues. Over the course of the import, we opened and closed 120 issues flagging suspicious data found in data reviews and sometimes working through protracted problems with New York City's head of GIS directly chiming in and helping interpret data correctly.

Some of the issues we discovered required updates to data we already imported. Once we were into the import even a couple of days, updating existing data manually quickly wasn't an option anymore. This is where automated edits came in, updating OpenStreetMap data programmatically. We captured all scripts for automated edits in the same code repository as the data conversion scripts. Some examples of programmatic updates are:

  • We fixed wrong tagging on school buildings where we tagged amenity=school instead of building=school.
  • We added ordinal suffixes like "th" in "4th".
  • We expanded abbreviations we had overlooked like "Ft" to "Fort".

We prepared this import well and we had good peer reviews on the imports list running up to the first uploads. We could head off many issues before we started importing. But in the end, the amount of issues we encountered after we started was still an unpleasant surprise. Having gained a lot more experience with this import I am sure the next time we can avoid a series of pitfalls - but the need for being able to programmatically update data after it's been uploaded is crucial for a successful import. You simply cannot plan for all eventualities and you need to be prepared to apply fixes as you go.

From this perspective, the next time I would want us to write data integrity tests from the get go. These tests would assert data quality on data before it is uploaded. This would allow us to be much more agile in updating and refactoring conversion scripts as we go.

Another set of tests would assert data quality of already uploaded data. This would help to identify existing systematic problems and catch data issues due to negligent uploads fast.

So far, we have a rudimentary directory with validation scripts we started to build up during the import. There is a real need across the OpenStreetMap community to further develop and share easy to use tools to test and validate data. What if we could reuse the validators available in JOSM from the command line on arbitrary portions of OpenStreetMap data?

Data processing

To get source data ready for upload, a conversion script would download the data, split it, convert it and store the resulting files in OSM XML format on Amazon S3. We set up a tasking manager job that would expose each file as a task for people to import. To upload a dataset, a mapper would select a task, download OpenStreetMap data and load OSM data. We used the excellent JOSM editor to merge and review data before uploading to OpenStreetMap.

The entire data processing script is captured in a Makefile and can be run from download to upload to Amazon S3 with a single command. In sequence, the processing script would perform the following actions:

  • Download and unpack buildings (polygon data in shapefile format)
  • Download and unpack addresses (point data in shapefile format)
  • Reproject and simplify building geometries
  • Reproject addresses
  • Split buildings and addresses into byte size chunks
  • Merge: Where only a single address is available for a building, merge the address attributes onto the building polygon.
  • Convert: Map attributes to OpenStreetMap tags, convert street name formatting and house number formatting and export in osm format
  • Put to S3

All code is open source under a permissive BSD license - feel free to lift where convenient.

Repeatable conversion

The conversion script is repeatable with a single command and it is organized in stages: Each significant processing step creates files on disk and can be run separately. All that's needed are the output files of the previous processing stage. Running the entire script would take on the order of several hours on an extra large Amazon EC2 instance. Being able to run steps like the merge stage or the convert stage separately was saving important debugging time. Throughout the import, we wound up reprocessing the data countless times as we fixed issues.

# Download, convert and push to s3
make && ./puts3.sh

# Download and expand all files, reproject
make download

# Chunk address and building files by district
make chunks

# Generate importable .osm files.
# This will populate the osm/ directory with one .osm file per
# NYC election district.
make osm

# Clean up all intermediary files:
make clean

# Put to s3
./puts3.sh

# For testing it's useful to convert just a single district.
# For instance, convert election district 65001:
make merged # Will take a while
python convert.py merged/buildings-addresses-65001.geojson # Very fast

Reprojecting and simplifying

New York City data comes in its own special projection and it is way too detailed for OpenStreetMap, so we reprojected and simplified it using ogr2ogr:

ogr2ogr -simplify 0.2 -t_srs EPSG:4326 -overwrite buildings/buildings.shp buildings/building_0913.shp

Splitting into byte size chunks

We couldn't upload all data in one go, it had to be cut into byte size chunks for manual review and upload. For splitting up the data we used New York City voting districts. This was an arbitrary choice, it just so happens that New York City voting districts are of a manageable size for manual uploads. There are 5,285 voting districts, the processing script generated an OSM file for manual upload for each one of them. The script chunk.py uses the great Shapely and Fiona libraries for doing this. It is nicely reusable for any task where you need to split up one geospatial dataset by the polygons of another geospatial dataset.

Merging

In OpenStreetMap, addresses tend to be merged onto building polygons where only one address is available for the building. We wanted to follow this convention and thus merged addresses where only one was available onto the corresponding building. The python script merge.py uses Shapely, Fiona and Rtree to do this. The script also converts data into geojson format - which was extremely useful for debugging as we could inspect them in any text editor. Here is an example output file of the merge stage.

Most of our fixes during the import happened on later stages so we could always work off of the merged files, saving about 50% of the total processing time.

Conversion

This is where most of the actual conversion is happening - this is also the part of the script that was the most significant time investment. It captures the full complexity of the conversion and handles hairy problems like house number conversion, street name conversion, cleanly merging geometries, generating multipolygons and more. The script convert.py uses Shapely and lxml for attribute mapping and exporting data in OSM XML format. OSM XML is directly readable by JOSM, so the resulting files of this stage could be opened and directly uploaded to OpenStreetMap with JOSM.

One tricky problem we're solving on this stage is merging T-intersections. OpenStreetMap's data model is unique in that it allows for sharing vertices between polygons. In the picture below, you see a typical T intersection. The node with the arrow is supposed to be part of the two ways describing the corner of one building but also part of the ways describing the straight walls of the other building.

It took us a while into the import to notice unmerged T-intersections. What makes this issue vexing is that OpenStreetMap's native decimal precision is lower than our source data. The result was that data we uploaded to OpenStreetMap looked fine, but once we downloaded it again it came back with truncated precision, moving nodes just far enough to place some within neighboring buildings.

Nodes on T-intersections between buildings need to be part of both buildings.

Our conversion script merges all incidents of T-intersections. This requires truncating decimal point precision to OpenStreetMap's native 7 positions and buffering - the technique to test not only whether a point sits on a line, but whether a point is in the close vicinity of a line. Read up on appendBuilding() in convert.py for details.

Pushing to S3 and exposing the data in the tasking manager

For exposing tasks to mappers we used the OSM Tasking Manager - a great tool for coordinating mapping tasks among large groups of individuals. We used a patched version that allows for tasks shaped as arbitrary polygons - instead of the usual squares. Each task polygon pointed to the file we've made available on s3, and the tasking manager exposed two buttons: one for loading OpenStreetMap data into JOSM, the other one for loading the import data into JOSM. We labeled those buttons "JOSM" and ".osm" which doesn't make all too much sense, but hey!

Loading data into JOSM from the tasking manager.

Reusing and the elusive import toolchain

Writing these scripts we avoided overthinking the problem. Creating generalized solutions for these functionalities is hard and we simply didn't have enough data points to do so. Now having gone through this import, I see a couple of opportunities to solidify a toolchain for import:

  • Generalize a command line script for splitting data (like a properly abstracted chunk.py)
  • Generalize a library for converting Simple Features to the OpenStreetMap data model, including XML export
  • Consider using PostGIS - I avoided it intentionally here, but built in spatial operations and indexing is appealing
  • Identify a pattern for reusable validation scripts that can be used to assert data quality before and after uploads

Continuously improving the map

Here is the full time line of the import:

We are not done yet. While all data has been imported to OpenStreetMap, there are final cleanup tasks we are tackling as we speak. Help us further improve the map: if you find a building or address related issue on the New York City map, please let us know by filling an issue on Github. As soon as new data is available from New York City, we will also take a look at updating OpenStreetMap where it makes sense.

Thank you

Huge thanks to all who have helped make this import happen. Through your work reviewing, coding, organizing mapping parties and doing data uploads you have helped make this import better than it would have been without you: Serge Wroclawski, Liz Barry, Eric Brelsford, Toby Murray, Ian Dees, Paul Norman, Frederick Ramm, Chris MacNally, and many others. A special thanks to Colin Reilly from New York City GIS who has helped on many occasions fully understand the source data and find the best decision translating it to OpenStreetMap. A big shout out to my colleagues who've put a ton of work into this endeavour: Ruben Lopez, Edith Quispe, Aaaron Lidman, Matt Greene, and Tom Macwright among others. Say hello if you bump into them on the internet, or maybe at one of the next conferences.

Cheers to making the best map in the world.

Location: East Village, New York, New York City, New York, 10003, United States of America

San Francisco building footprint data completed

Posted by lxbarth on 9 July 2014 in English (English)

We've completed work on the San Francisco building footprint dataset. We added or modified over 150,000 buildings in about 5 months of tracing with a team of three. My colleague Ruben just posted stats on the Mapbox blog. Here's an animation of all changes.

Location: West SoMa, San Francisco, San Francisco City and County, California, 94103, United States of America

Connecting Communities With Improved OpenStreetMap Credits on Mapbox Maps

Posted by lxbarth on 10 May 2014 in English (English)

We're updating attribution for OpenStreetMap-based Mapbox maps thanks to feedback on attribution conventions here on the diary and on mailing lists. The new convention on Mapbox maps is to expand attribution by default: collapsed attribution should only be used when attribution becomes unusually long, or screen space is limited. Expect us to roll out these changes over the next couple of weeks, but here is a preview right away.

The entire goal of the Mapbox team's work with OpenStreetMap is to help make OpenStreetMap the best map, everywhere in the world. We will only be able to achieve this as a community and with open data. Linking maps back to OpenStreetMap is at the heart of growing OpenStreetMap by helping turn map consumers into map contributors. Our goal with these new attribution conventions is only to further improve the connection of the many million users who view Mapbox maps every day to OpenStreetMap.

Here are the new attribution recommendations for all Mapbox maps that are based on OpenStreetMap data.

Expanded attribution

While collapsed attribution wrapped in an info - ⓘ - symbol, works well on small screens, we are now recommending to expand attribution whereever possible. The full attribution line is "© Mapbox © OpenStreetMap" and next to it we recommend an "Improve this map" link leading a user to editing on OpenStreetMap. Another change is that now "© OpenStreetMap" links directly to http://www.openstreetmap.org/copyright, "© Mapbox" continues to link to http://mapbox.com/about/maps listing the full roster of map data we're using including OpenStreetMap.

Recommended attribution on Mapbox maps. Click to explore.

Collapsed for small maps

We're recommending this form of attribution for small slippy maps. Here's an example:

Recommended attribution on small slippy Mapbox maps. Click to explore.

Use these attributions now

Until these attribution recommendations are rolled out on Mapbox.com, here are links to code snippets that already work today:

Attributing OpenStreetMap

Posted by lxbarth on 30 April 2014 in English (English)

Updated attribution recommendations for Mapbox maps: http://www.openstreetmap.org/user/lxbarth/diary/21847

Showing how OpenStreetMap is a living map, and making it easy to start mapping is the first step to turn someone from passively looking at a map into improving the map. It's part of spreading the word and building our community. At Mapbox we power OpenStreetMap based maps to hundreds of millions of people, and this gives us a unique opportunity to connect them to OpenStreetMap and turn people from being passive map consumers into active map contributors. Driving contributors to OpenStreetMap is a key goal we pursue not only with attribution but also in our aggressive launch communications around prominent new customers.

Our goal is to feature OpenStreetMap to help grow the community - attribution plays a key role in this.

Attributing OpenStreetMap based Mapbox maps

For the web, at Mapbox we recommend the following two variations for attributing OpenStreetMap:

Attribution in collapsible info control

Same attribution as above but expanded

In both cases (c) Mapbox (c) OpenStreetMap links to https://www.mapbox.com/about/maps with a full listing of all sources. Improve this map links to a map feedback page that explains how the map viewed is based on OpenStreetMap and how OpenStreetMap can be improved by anybody. The map feedback page is smart and shows a) the exact map you came from and b) places you into OpenStreetMap exactly where you left the map so you know where to start mapping. It has an option to skip the map-feedback page the next time you click Improve this map and take you directly to OpenStreetMap.

Map feedback page

Maps made of many sources

Mapbox maps are made up from a multitude of sources, here are some of our main sources:

  • OpenStreetMap
  • Digital Globe
  • NASA MODIS, Landsat, SRTM
  • USDA NAIP
  • l'Institut national de l'information géographique et forestière
  • Canadian government
  • The National Land Survey of Finland Topographic Database
  • Norwegian Mapping Authority
  • Ordnance Survey data
  • INEGI
  • Geodatastyrelsen
  • DHM / Terrain
  • The National Dynamic Land Cover Dataset
  • Custom data added to map

This list is only growing as the source composition of our maps gets more complex. So the string (c) Mapbox (c) OpenStreetMap is crediting the map engine and design (Mapbox) and one of the most prominent data provider (OpenStreetMap) but it is also functioning as a placeholder that basically says "Attribution". This is why we link this string to https://www.mapbox.com/about/maps that contains the full list of all data. For related reasons, I also typically recommend using the collapsible info control over the expanded string on the map as it allows us in the future to add additional attributions into the map as needed without turning people's maps into NASCARs. This is a good compromise between visibility, legal requirements and the need for screen space to grow.

Mapbox can be used with any kind of map library. So, ultimately we do not have control over a given maps attribution, but if you use Mapbox with our recommended libraries, attribution will show up as explained above, otherwise it is up to the developer to ensure appropriate attribution.

Improvements

We're working to make this even better, and are planning to improve:

  • More granular attribution based on data actually in use on data (right now it's one size fits all and we show this attribution as soon as you use any of streets/satellite/terrain data). A lot of Mapbox maps do not use OpenStreetMap but still want to associate proper attribution.
  • Allow third party users to sign into OpenStreetMap with the account they're using on the map (think of signing into OpenStreetMap with your Foursquare account). We need to make it easier to let communities that start using OpenStreetMap become part of our community. This will have huge network effects. This will also take some work on the OSM.org side.
  • Map feedback also has an option to submit feedback as email, and have our team run point on edits, fully respecting privacy.
  • Share map feedback where it makes sense.

Examples

Here are two typical Mapbox powered maps with attribution (click to explore).

Mapbox Outdoors: OpenStreetMap, Ordnance Survey data, l'Institut national de l'information géographique et forestière, NASA SRTM, The National Dynamic Land Cover Dataset plus more.

InfoAmazonia maps: OpenStreetMap, NASA Modis, Landsat, Digital Globe, IBGE, InfoAmazonia.

2014 Spring #editathon: Come Out and Map in 10 US Cities or from Home

Posted by lxbarth on 23 April 2014 in English (English)

This weekend, the quarterly US #editathon takes place in 10 US cities - read all about it on the OpenStreetMap US blog.

The #editathons are not just a great excuse to meet up with other OpenStreetMappers to push on projects, but also an opportunity to learn more about OpenStreetMap. In DC we'll be hosting the #editathon in the Mapbox garage. It's going to be great weather so expect some people to go outside and survey too. Read up on the Mapbox blog on how to find the Mapbox garage. Here's a photo from last year's event there:

Location: Logan Circle, Southwest Waterfront, Washington, District of Columbia, 20005, United States of America

You can't do this with any other map but OpenStreetMap

Posted by lxbarth on 10 April 2014 in English (English)

Hal Hudson from New Scientist wrote a great article on how OpenStreetMap helps Médicins Sans Frontières (MSF) fight Ebola in Guinea:

Online army helps map Guinea's Ebola outbreak

He reports:

WHEN doctors working for Médecins Sans Frontières (MSF) arrived in the West African nation of Guinea last month to combat an outbreak of the deadly Ebola haemorrhagic fever, they found themselves working in an information vacuum.

MSF enlisted the help of the Humanitarian OpenStreetMap team (HOT) and within a few days, a huge number of mappers flocked to OpenStreetMap, putting the affected areas on the map. Where existing Bing imagery was not sufficient, Astrium and DigitalGlobe provided fresh takes.

Few days into the crisis Pierre Béland from the Humanitarian OpenStreetMap team shared numbers of this effort on the mailing list:

Even if this crisis is not in all the medias, the contribution from the OSM contributors is fantastic. In 8.5 days, 302 contributors, 1.2 million objects, 114,000 buildings, 5,000 places and 6,100 landuse polygons.

The New Scientist article explains how OpenStreetMap helps fight the virus:

Mathieu Soupart, who leads technical support for MSF operations, says his organisation started using the maps right away to pinpoint where infected people were coming from and work out how the virus, which had killed 95 people in Guinea when New Scientist went to press, is spreading. "Having very detailed maps with most of the buildings is very important, especially when working door to door, house by house," he says. The maps also let MSF chase down rumours of infection in surrounding hamlets, allowing them to find their way through unfamiliar terrain.

Since the response to the Haiti earthquake we are now seeing time and again how OpenStreetMap is facilitating incredibly mapping of badly needed geo data, helping first line emergency responders do their work.

You can't do this with any other map but OpenStreetMap.

This type of massive mapping effort is only possible because of OpenStreetMap allowing direct editing of data to anyone and the availability of OpenStreetMap as raw and open data. The former allows anyone to get involved in helping respond to a crisis, the latter gives full power to responding parties over how exactly maps should look like or access to raw data for analysis. No other map offers this level of openness at a global scale.

Join the effort mapping Guinea on the HOT tasking manager or by support MSF in responding to the crisis.

High res DigitalGlobe imagery open for tracing through Mapbox Satellite

Posted by lxbarth on 10 April 2014 in English (English)

Cross posted to talk list

Effective immediately the Mapbox Satellite option in iD and JOSM is 100% open for tracing in OpenStreetMap, including all our high resolution DigitalGlobe imagery. This is full coverage down to zoom level 19 imagery in the US + Western Europe and world wide to zoom level 17.

To use this imagery select "Mapbox Satellite" from the imagery menu in iD on the web or in JOSM. Mapbox Satellite is open for tracing in OpenStreetMap in general and not tied to a specific editor, so if you would like to add Mapbox Satellite to another OpenStreetMap editor you are welcome to do so.

This is a big affirmation of DigitalGlobe's commitment to provide imagery for OpenStreetMap (also Bing imagery contains to a very large degree DigitalGlobe material). Props to Kevin Bullock and our friends at DigitalGlobe - it's fantastic working with good people who see wins of working with OpenStreetMap.

Digital Globe announcement

Editing in Washington DC with the Mapbox Satellite layer

PS - on an existing installation of JOSM you'll have to refresh your imagery menu like so: http://cl.ly/image/383O2L0t431s

OpenStreetMap Isn't All That Open, Let's Change That and Drop Share-Alike

Posted by lxbarth on 13 March 2014 in English (English)

OpenStreetMap is published under a share-alike license, the so called Open Database License (ODbL). The license says that if raw OpenStreetMap data is mingled with raw third party data, and the result is used publicly, you are required to release the result under the same ODbL. This is, in short, the share-alike principle under which OpenStreetMap data is available today - under certain circumstances, it extends the license of OpenStreetMap data to data sets it's mixed into.

Sounds like a great idea at first, right? You're promoting the idea of opening data by making sure anyone who uses your data opens their data too. Well, there's a big gotcha: we wind up more often with OpenStreetMap not being used rather than with previously closed data opened up. This in turn hurts the project which thrives on increased adoption.

Photo: Alan Levine

Organizations or individuals who want to mix OpenStreetMap data with third party data often can't because they aren't in a position to make licensing decisions on that third party data. The reality is that opening data under a specific license is usually too slow or plain not possible.

Often times confusion about what's allowed and what is not allowed under the ODbL is just as bad. Ever seen advice opening with "I'm not a lawyer, but..."? That's what I'm talking about. Ever tried to get an actual lawyer to provide guidance on the ODbL? That's what I'm talking about. Tried to use the OpenStreetMap Wiki to learn about how the ODbL is interpreted by the licensor, the OpenStreetMap Foundation? That's what I'm talking about.

The result is that OpenStreetMap is not being used in situations where it should be used, which undermines a project whose success depends on increased adoption.

Not only is OpenStreetMap not being used as much as it could, the assumption that share-alike encourages contribution is a myth. I have yet to meet the individual, company, non profit or government agency who contributes because that's what the license calls for. And I have yet to witness the troves of data opened under the ODbL in compliance with the license. OpenStreetMap gains no extra benefit from share-alike. The reality is that OpenStreetMap is only used extensively in situations where the share-alike license does not apply, for instance, map rendering.

Here are examples of what should be possible with OpenStreetMap but is not because of share alike:

The Wheelmap community manages wheelchair accessibility information for over 400,000 thousand places in OpenStreetMap. Ideally Wheelmap would be able to syndicate this data into any other map - think Nokia, Google, Apple. Today they can't because of share-alike limitations of the ODbL. Woulnd't people using this data on Google maps mean more people with an interest to maintain and improve it on OpenStreetMap since they would know that adding data to OpenStreetMap means adding it to all the maps in the world?

Currently, New York City building and address data is being imported into OpenStreetMap (disclaimer: I'm involved). Ideally the government of New York City would just copy changes from OpenStreetMap to help maintain their own datasets - but they can't. Many datasets managed by government behind closed doors today should just be managed by the same maintainers on OpenStreetMap tomorrow - with gains for everyone. Think of the US Census Bureau whose TIGER data we're all benefiting from. This vision of citizens and government collaborating around OpenStreetMap is severely cut short by the ODbL. Governments will never use OpenStreetMap in an extensive way until they can make it part of their workflow, and as long as the ODbL taints any data that touches it, it can't. Look at the United States - many government datasets are public domain, government can't use OpenStreetMap directly because the ODbL is not compatible with it.

And what about exchanging data with our big sister project Wikipedia? We should be copying a lot more data back and forth between OpenStreetMap and Wikipedia. OpenStreetMap could be Wikipedia's geocoder and gazetteer. And yes, if it wasn't for Wikipedia's own share-alike license, we could mine Wikipedia for addresses, phone numbers, home pages, and populations without a bad conscience. Wikipedia can't use OpenStreetMap because OpenStreetMap is not truly open, and OpenStreetMap can't use Wikipedia becuase it is not truly open. What better examples of two sucessful open data projects are there than Wikipedia and OpenStreetMap - but we are not open enough for our data to touch? This makes no sense.

If we dropped share-alike, nothing would stop players like Google or Apple from mixing OpenStreetMap data extensively into their mobile maps. And this is a good thing. OpenStreetMap's opportunity is not to compete and win against the Google Maps of the world, but to say what's on their maps. With adoption on established mapping platforms OpenStreetMap would instantly reach many millions of users with its data, drastically increasing the project's impact and playing a bigger role than stale backfill. OpenStreetMap's current licensing is stunting our growth - and diminishing the impact of all of the amazing data that we have.

Under the current license, these example cases are either outright impossible, or require time, good lawyers and programmers to avoid share-alike to infect third party data with the ODbL. The ODbL imposes unnecessarily onerous hurdles at no gain for the project. Worst of all, just the license's ambiguities kill adoption.

If OpenStreetMap is to turn into the data set that makes geo data a true public good we have to drop share-alike. Let's make OpenStreetMap data actually open.

OpenStreetMap is at the verge of being the dataset that powers the world, quite literally. What's between where we are today and making OpenStreetMap the source for global geographic data, is that OpenStreetMap simply can't be used in many applications where it would be the ideal solution. These lost opportunities matter because they are what keeps OpenStreetMap from having the impact it should have. As Serge Wroclawski succinctly argued in his essay on why the world needs OpenStreetMap, OpenStreetMap's purpose is to democratize who decides what's on the map:

Every time I tell someone about OpenStreetMap, they inevitably ask "Why not use Google Maps?" From a practical standpoint, it's a reasonable question, but ultimately this is not just a matter of practicality, but of what kind of society we want to live in.

OpenStreetMap simply won't matter if it doesn't power the applications that millions of individuals use to search, navigate and contextualize each day. The more OpenStreetMap is used, the more impactful each of our work is, and the more incentives we create to join the movement. We should not be afraid of that.

For your reading pleasure: Here's are the entire 4,000 words of a license we should be throwing out: ODbL 1.0. I will be speaking about this topic at the State of the Map US conference in Washington DC. Join the conversation here or on Twitter.

Propose a session for State of the Map US by February 2 (this Sunday)

Posted by lxbarth on 30 January 2014 in English (English)

Share what you've been working on, or present your vision for OpenStreetMap at this year's State of the Map US in Washington DC April 12 - 13.

You have until February 2nd (this Sunday) to submit your session.

You'll find the submission form here: http://stateofthemap.us/

Looking forward to hearing from you.

Presentations at State of the Map US 2013. Photo: Justin Miller.

Restarting the New York City Building and Address Import

Posted by lxbarth on 20 November 2013 in English (English)

This is an update on the ongoing import of New York City buildings and addresses. For background read up on New York City and OpenStreetMap cooperating through Open Data

At our kick off session past month in New York City, we've discovered issues with the data conversion that are fixed now and the import is ready to start over again.

We have taken the time to take a close review of existing uploads. Here are some issues we've found that are worth highlighting as we restart the import.

  • Make sure every upload to OpenStreetMap completely validates and all critical warnings are resolved before you update.
  • Critical warnings are at least any warnings or errors that stem from
    • Buildings overlapping with buildings
    • Buildings overlapping with other features they cannot overlap with such as roads
  • Resolve not only buildings duplicate with existing buildings but also addresses duplicate with existing addresses
  • Merge point of interest information from existing nodes to new buildings when they clearly building-level such as schools, fire houses, super markets, etc.

To get started head over to the tasking manager carefully (re) read instructions and grab a task.

Make your life easier and get these JOSM styles for buildings and addresses by emacsen. They'll allow you to see issues with the data better. Learn how to install them in JOSM docs.

If you have any questions, fire away here on the comment thread.

Location: Little Italy, New York, New York City, New York, 10012, United States of America

What is the OpenStreetMap convention? Do we tag addresses on buildings or on separate nodes?

Posted by lxbarth on 25 October 2013 in English (English)

On the imports list I recently raised the question on whether to tag addresses on buildings ways or not. Specifically, if there is only one address for a given building polygon, should the address tags sit on the building's ways or should the address tags sit on a separate node within the building? Obviously, if there is more than one address per building, there is no other way but mapping them as nodes separate from the building way.

Eric Fischer just ran an analysis to figure out what is actually the current convention in OpenStreetMap. Here's the short answer: addresses are tagged on building ways where possible. By a wide margin.

Read on for the numbers.

Address tagged on building ways (left) is the more common approach in OpenStreetMap versus address tagged on a separate node (right).

The rough numbers break down like this:

  • 10 million buildings carry addresses on the way.
  • 3 million buildings contain one or more address nodes.
  • 4 million address nodes sit within a building.

So the maximum theoretical number of buildings with a single address node is 3 million minus 1. Contrast this with 10 million buildings with the address information on the way. This still assumes one crazy building containing one million address nodes and it does not discount redundantly tagged addresses in the case of POI nodes that duplicate the address of the building they sit in.

Here are the full numbers (OSM planet, September 25 2013):

Buildings                                           91,917,857 
Buildings with address on way                        9,386,811
Buildings that contain one or more address nodes     2,960,363
Address nodes within a building                      3,858,096
Address nodes that are not on or within a building  10,135,036
Addresses on a node of the building way                673,975

(An address node is defined here as a node that contains an addr:housenumber tag and is not part of a building way.)

Good or bad?

For now, I'll personally stick to this convention as it's established. For the same reason I also want to stick to it for the ongoing New York City building and address import.

In principle though, I question tagging addresses on building polygons. It's a special case with no benefits while separate address nodes would work in both, the case where there are multiple addresses per building polygon and where there is only one address per building polygon.

Of course, we might also need address polygons :p.

First buildings and addresses in New York City

Posted by lxbarth on 15 October 2013 in English (English)

Last Saturday we officially kicked off the NYC building and address import with a community session hosted by OSM-NYC and Public Labs at the Pfizer building in Brooklyn. The goal was to get the local NYC OSM community involved in this large data undertaking and at the same time harden our import process.

Over 20 people attended, and we knocked out 158 of the over 5000+ sub-tasks total. Both turn out and tasks accomplished were great and exceeded what I expected for a casual Saturday afternoon event.

progress-nyc

We've also discovered an address formatting issue and a geometry conversion issue that put the import on hold until they are addressed.

Working through this import we're learning very interesting lessons:

  • OSM data structure is significantly different from traditional GIS, nailing down conceptual differences when translating to OSM takes time.
  • Importing is a high inertia problem, partly due to sheer volume but also due to the lack of a solid tool chain like safe roll back tools or established conversion tools.
  • Expect interesting quality issues in your source data. NYC data for instance has inconsistent address formatting in the source.
  • Doing a fully automated import is non-trivial. For example, in NYC, buildings often intersect with misaligned TIGER roads. That's one big reason this import is not fully automated.
  • Once all data is uploaded, we'll need a QA check on inconsistent data to catch any errors introduced by humans during the upload.
  • This all feels a little like heart surgery.

Here are a couple of pictures and screenshots from the Saturday event. If you'd like to get involved drop me a line. Again, the import is on hold until a couple of issues are sorted out, but you're welcome to join.

screen shot 2013-10-13 at 11 55 18 pm

b2ae76aa336f11e3926322000aaa0aa5_8

screen shot 2013-10-13 at 11 42 21 pm

b497007e336d11e3b64022000a1fb8ee_8

screen shot 2013-10-13 at 11 52 14 pm

Location: Marcy Houses, Brooklyn, Rutland Plaza, Kings, New York City, New York, 11206, United States of America

Why I'm running for OpenStreetMap US again

Posted by lxbarth on 4 October 2013 in English (English)

Because I love it.

Open data is changing the world. OpenStreetMap, as a true open data project of the commons, is proving its viability with continuously growing contributor numbers and expanding adoption. We're well under way to replace what has been historically the realm of governments and proprietary-data companies with amazing open data that is not better because it's cheaper, but actually provides fresher and more detailed data because it's open and community driven. It's exciting to be a part of this in my job as data lead at MapBox, as an individual contributor and as a board member of the OpenStreetMap US chapter.

This last year on the board of OpenStreetMap US has been amazing. Working together with Jim, John, Randy and Martijn on the board and with the great support of community members like Kathleen Danielson, Bonnie Bogle and Ian Dees, we've brought the organization to a new level. We're honing in on our goal to not only promote OpenStreetMap in the United States, but to make it bigger, stronger and more diverse. Here are some of the things we've accomplished:

For the next year I want to stay 100% focused on continuing to grow OpenStreetMap in the US and beyond. I am convinced we can do this only by uniting the many voices of our project and by being as open and inviting as possible to newcomers. This is why it will be so important to nail our conference again. The importance of State of the Map US for the growth of OpenStreetMap cannot be overstated. It is the main tool we have to convene our community, pull in new individuals and institutions and discuss the future of the project. OpenStreetMap brings together interests from very different backgrounds: it's being used and improved by individual mappers, businesses, governments and nonprofits. Individuals work with it as data consumers, data producers, software developers, designers and researchers. This diversity is exactly our strength and is exactly what we need to continue to grow OpenStreetMap.

I would love your vote for pushing on this vision on the board of OpenStreetMap US.

OpenStreetMap US elections are running from October 5th to October 12th, to vote, you simply need to be a member of OpenStreetMap US. Signing up only takes a minute, find out all details about the election over on the OpenStreetMap.us blog.

OpenStreetMap colored by contributor id

A Social OpenStreetMap.org Without Groups

Posted by lxbarth on 24 September 2013 in English (English)

There has been lots of talk about groups on OpenStreetMap.org lately. In early 2013 Mikel called for better social tools, including groups on OpenStreetMap, and lately more often groups have been mentioned as a replacement for our ailing mailing lists. Saman had a version of groups in his blue sky mockups for OpenStreetMap.org. Tom's posted a sketch for groups as pull request.

I'd like to add a dose of skepticism in this discussion: I don't think we should implement groups on OpenStreetMap.org right now, there are better alternatives to get started with if our goal is to make OpenStreetMap more social and let mappers connect better.

Here's why:

  1. Most conversations ideally don't require groups.
  2. It's hard to do social software right, groups in particular.
  3. Social media platforms are distributing.

(1) Most conversations ideally don't require groups

When you stop to think about it, groups are a crutch. They require you to set up a space with a topic and name (even if it's just a couple of clicks), then people need to find it, subscribe to it and sustain interest in the group. If the group doesn't go well, it bleeds members and lives on as a distracting zombie. Ideally, you'd be able to have conversaions ad-hoc around a certain topic or locality. That's one reason why you don't find groups at all or in a dominant role on some of the most successful social networks today.

(2) It's hard to do social software right, groups in particular

What was the last forum or groups software you used that didn't suck? Right. It's hard to do groups right on an interaction design level. I personally haven't seen general group discussion software ever done right, but what I do know is this: whatever we embark on means significant investment - or falling short on expectations. The risk to wind up with another level of noise in our already brittle social space is real.

(3) Social media platforms are distributing

Today OpenStreetMap enthusiasts gather in spaces on mailing lists, Meetup.com, Twitter, Facebook, forums, and Google Groups. Whatever we build competes in this space. Right now, we shouldn't attempt to build the better replacement for all of this, but think of OpenStreetMap.org as a compatible layer, allowing mappers to bring OpenStreetMap into their respective social online environments with ease.

Alternatives

Instead of introducing groups as a large new feature on OpenStreetMap.org I suggest we fix current social functionality on OpenStreetMap.org. This would vastly improve how mappers connect on a local and global level and would allow us to take an iterative approach, giving us real returns at each step, building on firm, well known ground. Here's a first back log:

  • Great opt-out email notifications for edits, diary posts, comments of who you're following and posts you've commented on.
  • Make it much easier to see who's mapping in an area
  • Introduce public wall-style messaging, allowing conversations in the open.
  • Ideally shut down private messaging to avoid abuse (which is happening according to administrators).
  • This is small: Rename 'friend' to 'follow' - because that's what it is, no one confirms a friend request on OpenStreetMap.
  • Kill the home location feature including the map on the profile
  • Replace the useless friend listing and 'in your area' listing on your profile with a list of latest edits by who you're following
  • Encourage users to link to local groups from their profile (Facebook links, meetup.com links, mailing lists links, wiki links, etc.)
  • Possibly: vote up (down?) comments on diary.

Each of the above steps is small compared to implementing groups - still, each one will require dedicated work. Together they are designed to move us forward in a solid fashion from where we are right now. And note: some of the features like notifications could come in handy if we still wanted to introduce groups at some later point.

So what about our mailing lists?

Done right, the above improvements will already take important weight off of our mailing lists, we should iterate from there. With improved notifications and commenting on diaries we'll have much better spaces for meaningful discussions. I assume that much of our outcome oriented work will continue to move to GitHub. It's also going to be interesting to watch how Map Club will move in this realm. In addition, I suggest evaluating Discourse.org, a promising new discussion forum by Jeff Atwood the maker of Stack exchange.

What do you think?

Disclaimer: I am offering this simply as food of thought for those who're interested in pushing on social features right now. From a MapBox team perspective, we're not queueing up any immediate work on the social features mentioned here.

A new way of fast browsing of latest changes

Posted by lxbarth on 2 May 2013 in English (English)

Finding out fast who's modified the map is hugely valuable to review changes in areas you care about, to connect to new mappers or to just show how fresh the map is.

Unfortunately, the part of OpenStreetMap.org that's supposed to provide this functionality - the history tab - is functionally broken. I'd like to suggest here a straightforward way to fix it, punting on some of the hard engineering problems that fast browsing of historic changes bring with them.

Background

To recap if you're new to the issue, here's why the history tab doesn't work today: virtually anywhere in the world you'd like to see the latest changes of a particular area on OpenStreetMap, what you'll actually get is large-scale changes whose bounding box happens to intersect with with the area on the map you're viewing while not actually impacting any data in the area you're viewing.

This is a well known problem in OpenStreetMap and people like Matt Amos, Ian Dees and more recently Paweł Paprota have worked on coming up with a solution for this issue.

The underlying engineering problem is Hard: changes to OpenStreetMap are organized in changesets, each one of which can contain up to 50,000 edits and whose modifications can be geographically huge. Querying all changesets that actually modified data in an arbitrary bounding box of the world and displaying them in reverse chronological order is computationally expensive while at the same time it should happen in milliseconds to satisfy a web request and allow for fast browsing.

Fixing the history tab

At the Chicago hack weekend Tom and I created a prototype that completely punts on the expensive problem of fast browsing for the entire changeset history. The approach we've taken is essentially to present you with a map and a list of the latest changes on visible elements first, then only reveal the history of an element when you click on it.

Conceptually, this is very straightforward and supported by existing APIs, computationally this is dirt cheap. This is not actually a novel approach in OpenStreetMap (most editors do something like that) but it is viable as an alternative to today's history tab.

The prototype doesn't do any data processing itself and is actually just a simple HTTP and JS application hosted on Github pages. It uses the OpenStreetMap API's map call. The latter means it is querying OpenStreetMap in an unefficient way, but this is a comparatively simple problem to fix. It could just as well query a very simple tiled data source.

Check out the result for yourself. I think it is already a very useful browser for exploring changes on OpenStreetMap. With few iterations this could be much faster and a viable fix to OpenStreetMap's history tab.

Related conversation on [dev] list can be found here: http://lists.openstreetmap.org/pipermail/dev/2013-May/026891.html

LearnOSM Relaunched

Posted by lxbarth on 21 March 2013 in English (English)

We just relaunched LearnOSM - the step by step resource for learning OpenStreetMap. LearnOSM was launched in 2011 by the Humanitarian OpenStreetMap team for the workshops they are giving world wide. It has grown into a resource used by OpenStreetMap newcomers and trainers well beyond its roots in humanitarian aid and disaster risk management.

Read up on the new LearnOSM and learn how to contribute to translations and other improvements by Jue Yang, the designer and developer behind the new face of LearnOSM:

http://mapbox.com/blog/learnosm-with-new-design/

Spot checking the openstreetmap-carto style

Posted by lxbarth on 19 December 2012 in English (English)

Andy Allan recently ported the OpenStreetMap standard style from pure Mapnik XML to CartoCSS and TileMill. This is exciting as it's a huge step towards making contributing to the style more accessible. The port is nearly perfect and kinks are being worked out right now. I took a minute to spot check and pull together a couple of screenshots showing just how close this awesome piece of work is. I hope to see this go up soon on OpenStreetMap.org. Andy's port wouldn't change anything about how tiles are being rendered on OpenStreetMap, all that changes is how the style for those styles would be created: In the future, we'd use TileMill and generate the Mapnik XML from user friendly Carto CSS.

Here is San Francisco in the new OSM-carto port, just looks like the existing map:

Setup

For spot checking I use the comparison app that Ian and Tom cobbled together using OpenStreetMap US servers and bl.ocks.org. It shows the existing OSM Standard style to the left (I'll just call this style 'OSM' for the remaining post) and the new port to Carto CSS on the right (I'll call it 'OSM-carto' for the remaining post). Note: right now it's slow / down as performance problems are being figured out.

What follows here is a quick log from my review, others have been busy spot checking, too, head over to the issue queue to find out more.

School labels are different

School labels aren't bold in the new OSM-carto style. This has been fixed in the meantime.

OSM (existing):

OSM-carto (new):

Complex junctions

Complex junctions seem to be rendering great with roads correctly rendered on top of each other and labels placed well.

OSM (existing):

OSM-carto (new):

OSM-carto has halo on secondary

OSM has no halo on secondary, while OSM-carto does have one in orange (see Castro street label) #25.

OSM (existing):

OSM-carto (new):

OSM-carto has no halo on tertiary

To the contrary, OSM has a white halo on tertiary highways where OSM-carto has none #24.

OSM (existing):

OSM-carto (new):

Label placement seems to be slightly different

This might be due to slightly stale data and generally doesn't seem to make a difference in terms of cartographic quality. In this difference rendition between the OSM and the OSM-carto style you can see how all labels seem to be offset by a certain factor and some street labels are placed at different positions along the way.

Low zoom levels

Low zoom levels look almost perfect at quick inspection. I do not know where differences in labels (see Sapporo for instance) come from.

OSM (existing):

OSM-carto (new):

Mid zoom levels are almost 100% the same

OSM (existing):

OSM-carto (new):

Difference:

Differences in landcover order

There are some known differences in the order of land cover. This is being worked out right now in #15. Here is an example where the difference in landcover order surfaces in the visual result.

OSM (existing):

OSM-carto (new):

Older Entries | Newer Entries